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Abstract We consider a class of infinite-dimensional diffusions where the interaction be-
tween the components has a finite extent both in space and time. We start the system from
a Gibbs measure with a finite-range uniformly bounded interaction. Under suitable condi-
tions on the drift, we prove that there exists 7y > 0 such that the distribution at time ¢ < 1y is
a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion
of both the initial interaction and certain time-reversed Girsanov factors coming from the
dynamics.

Keywords Infinite-dimensional diffusion - Cluster expansion - Time-reversal -
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1 Introduction

In this paper we study short-time Gibbsianness for a class of infinite-dimensional diffusions
with general space-time interaction. The diffusion X = (X;(#)),> cz¢ is the solution of the
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following stochastic differential equations (SDE)
dXi(t)=b;(t, X)dt +dBi(t), t>0,ieZ’ 1)

with values in RZ and starting at time O in a Gibbs measure called v. The drift term
b which characterizes the type of interaction between the coordinates is adapted but can
be non-Markovian, i.e. the interaction at time ¢t may depend on the values of X on the
full time interval [0, 7], so-called delay term. Stochastic delay equations are relevant due
to their various applications for example in biomathematics and finance (see e.g. [15]
and [9]).

Earlier short-time Gibbsianness results could be obtained for b defined as a gradient
of a Hamiltonian, see [1]. In that case one even has a Gibbs structure on the path space
C(R.,R) Z* and the existence of a reversible stationary measure for the dynamics, properties
which are heavily used by the authors in their proof. In contrast, in our model, as soon as
the drift is not of gradient form, we do not know if a reversible measure exists (in fact,
even the existence of a stationary measure is not guaranteed). Another important difference
with previous works consists in the fact that, since the form of the interaction between the
spins (the drift) is quite general, one cannot make use any more of a decoupling method:
this tool was used in [1] to compare the infinite-dimensional dynamics with another simpler
dynamics, where a spin is forced to be independent of the others.

For discrete Ising spins there exist also short-time results; for example, in [3, 13], Gibb-
sianness is proved for general local dynamics, making use of a reversible measure. See also
[4, 10, 11] for results in this direction for non-discrete bounded spins. The idea behind short-
time conservation of Gibbsianness is that the time-evolved measure is in a certain sense close
to the initial one, which was assumed to be Gibbs. In the case of discrete spins following a
dynamics of Glauber type (see [13]), this means that there is a “sea” (in the sense of perco-
lation) of spins that did not change at all, and isolated islands (for which there is a Peierls
estimate) of spins where at least one flip occurred. This picture is implemented in a cluster
expansion of the Radon-Nikodym derivative of the finite-volume distribution at time ¢ w.r.t.
the finite-volume distribution at time 0. In order to obtain Gibbsianness, one has to show
that the sum of the cluster weights containing a fixed site (the origin) is finite, uniformly
in A, for ¢t small enough. The cluster weights have contributions from the interaction in the
initial measure and from Girsanov factors coming from the dynamics. The Girsanov factors
are multiplicative functionals which are close to 1 for small ¢, and therefore in good shape
for a cluster expansion.

We prove here that for general drifts satisfying assumptions (A1)—(A3) the law of the
infinite-dimensional diffusion (1) stays Gibbsian for a (short) time. In the case of continu-
ous unbounded spins, the picture is similar as for discrete spins but technically much more
involved. One has to set up a cluster expansion of the Radon-Nikodym derivative of the
finite-volume measure at time ¢ > 0 too. The factor coming from the Girsanov formula now
contains stochastic integrals, which cannot be turned into ordinary integrals as is done in the
reversible case, using Itd’s formula. The control of the Girsanov factors reduces to a control
of exponential moments of time-reversal of these stochastic integrals, which can be done
under some regularity conditions. Furthermore, our results lead, as a corollary, to a con-
structive local existence for a class of infinite-dimensional SDE with non-Markovian drift
(see [2] also).

The rest of our paper is organized as follows. In Sect. 2 we give definitions of Gibbs
measures, assumptions on the dynamics, as well as some non-trivial examples satisfying the
assumptions (A1)—(A3). In Sect. 3 we state and prove our main theorem. In Appendix we
come back to the examples and verify the assumptions for them.
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2 Notations and Definitions

In this section we want to define the necessary framework for our study. In particular we
present a class of examples to which our results apply.

2.1 Interactions and Gibbs Measures

We will work with measures on the configuration space RZ’. Elements of RZ” are denoted

x,y,z.For A C 74, x, y € RZ , we denote x5 zxc the configuration obtained by concatenat-
ing the restriction of x to A with the restriction of z to A€, i.e.,

X; ifi € A,

Cl‘: 2
(XaZac) {z,» I @)

We choose the initial distribution v to be a Gibbs measure associated to an interaction ¢ and
an a priori measure m. Let us recall some definitions.

Definition 2.1 An interaction ¢ on RZ is a collection of functions ¢, from RZ’ to R, where
A is any finite subset of Z¢, which satisfy following properties

1. @4 is Fp-measurable, where F, is the sigma-field generated by the canonical projection
on RA,
2. ¢ is absolutely summable, i.e., for all i € Z9,

> lalles < oo
A>i
3. Translation invariance:
Oa+i(Tix) = @a(x)

where 7; denotes the shift over i: (7;x); :=x;_;.

Furthermore, we assume in this paper just as in [1] that the initial interaction ¢ is

(a) of finite range, i.e., there exists a r > 0 such that if diam(A) >r = o, =0
(b) VA, ¢, is Lipschitz continuous.

Given the interaction ¢ we define the associated Hamiltonian h = (h) 57« With respect to
the boundary condition z € RZ’ by

ha(ia,zae) = Y @a(xazac). 3)

AN NAHED

(The above sum is finite since ¢ is of finite range.)
The finite-volume Gibbs measure with boundary condition z w.r.t. an a priori measure m
is then given by

1
va (dxp) = Z—ZCXP(—hA(XA, Zac)) m(dxy) “4)
A

where Z§ = f]RA exp(—ha(ya, zac))m(dy,) is the finite-volume partition function. We con-
sider as a priori measure m a finite product measure, absolutely continuous w.r.t. Lebesgue
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measure. By absolute summability of the interactions, we then have that the partition func-
tions Z3 are finite.
As usual, the finite-volume Gibbs measure with free boundary conditions is defined by

1
va(dx) 1= = exp(— > goA(xA))m(dxA). )
A

ACA

Definition 2.2 The measure u is a Gibbs measure with interaction ¢ and a priori measure m,
if for all finite A C Z¢ and smooth test functions f Fa-measurable, the so-called DLR
conditions are satisfied:

[ rennin = [ [ rommdxns. ©)
This means that v, , is a version of the conditional probability pu(dxs|xac = zac).

Let us recall that (6) is satisfied for all A as soon as it is satisfied for singletons (see for
example [5]), i.e., as soon as for each i € 74

exp(—h; (x;, xza\;))
p(—hi (yi, xza\;))m(dy;)

p(dxi|xzay;) = Tex m(dx;) )

where £; is given by (3) for A = {i}.

Remark 2.1 Since we restrict ourselves in this paper to interactions which are uniformly
bounded, certain natural interactions such as quadratic ones are not included here. In fact,
all “unboundedness” is hidden in the a priori measure (the log of the density of m has to
be unbounded for the partition functions to be finite). In [12] unbounded interactions of a
specific type are considered for a dynamics of independent Ornstein-Uhlenbeck processes.

2.2 Dynamics

Let Q =C[R,, R)Zd be the path space for continuous trajectories of the time evolution of
the continuous spin system endowed with the canonical sigma-field F.

We denote by P = ®;.z¢ P; the Wiener measure on €2, resp. by P* = ®,zd Pix" the
Wiener measure with deterministic initial condition x = (x;); € RZd, which will be denoted
in the finite-volume case just by Py = ®;cp P

Moreover P[f)if] is the law of a Brownian bridge on [0, ] obtained by conditioning P to
be at time 0 in x and at time ¢ in y.

The time-reversal 6 = (6,),-¢ is a family of functionals on the path space 2. It is defined
as follows for # > 0 and w(-) € C([0, 1], R)Z":

b () =w(t—>). ®)
We consider the following infinite-dimensional system of stochastic differential equations:

{dXAﬂ:bmnXﬁh+d&0L t>0,ieZ ©

X(0)~v

where (B;);cz4 1s a sequence of real-valued independent Brownian motions. The drift term
b;(t, w) at time t may possibly depend on the values of w on the whole time interval [0, ],
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thus in particular X could be non-Markovian. We suppose the existence of a solution of the
system (9) and denote it by Q", resp. Q if the initial condition is deterministic (v = §,).
The drift term b = (b;); satisfies the following assumptions (A1)—(A3).

(A1) Translation invariant, finite range and adapted, i.e.,

VieZ!, bt o) = byt o) (10)
and  bo(t, ) = bo(t, wn) = bo(t, (wp(s) :0 <5 <1)) an
where A/ C Z is a fixed finite connected set containing the origin.

(A2) Lipschitz continuous uniformly on each compact time interval:
VT >03K(T)>0suchthatforall0 <t <T,

bo(t, ) — bo(t, )| < K(T) sup |w;(s) — @ (s)] (12)
0<s<t,jeN
and |bo(z,0)| < K(T). (13)
(A3) Exponential moment of some time-reversal functional: b is such that, if F} denotes
the functional

t

! 1
Fj(X) ::/ bo(s, X)dX,(s) — 5/ b(z)(s,X)ds (14)
0 0
its time-reversal F{j o 6, is well defined and satisfies

lim Eps ([exp(|Ff 0 6,1) = 1]7) =0 (15)

for every initial condition x € RZ’. Here, the integer p is the next odd number larger
than max(range(b), range(¢)) + 1 (see the proof of Lemma 3.5, (61)).

We want to present some classes of drifts b which satisfy the above requirements (Al)—

(A3).

Example 2.1 (Markovian Drift) Let by(t, w) = bo(t, wnr(t)) be a Lipschitz continuous
Markovian drift with finite range A/. Moreover we assume for j € A the existence of the
first derivative by, := B‘%ng with, forall T > 0

1511700 + 18/l 7,00 1= sup sup (Ibo(t, x)| + [Bg (2, x)[) < +00. (16)

tSTxeRZd
This class encloses in particular the Hamiltonian drift from Theorem 1 in [1] as a special
case.
The second example describes an interaction between the coordinates which is spatially

degenerate (self-interaction) but has long temporal memory and is thus non-Markovian.

Example 2.2 (Long Memory Case) Let the drift b; be defined as
t
bi(t, w) =/ €(s) (@i (s) — wi (0))ds a7
0
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where the locally integrable memory function € : [0, oo] — R has the weak continuity prop-
erty

f €(s)ds —> 0. (18)
0 t—0

The third example is a generalisation of the first ones.

Example 2.3 (Interaction with Finite Extent in Space and Time) Let b be given by

bi(t,w)=/ o;(t — s, w(s) — w(0))dV; 19)
0

where the integrator V; can be deterministic or stochastic (adapted) and of bounded varia-
tion. The functions ¢; are Lipschitz continuous and spatially local, i.e.,

ot —s5,x)=ap(t — s, (TiX)n)- (20)

The proof that the drifts described in the three examples above satisfy assumptions (A1)—
(A3) is postponed to the Appendix. In particular we will there explicitly compute the time-
reversal functional F{j o 0, and provide a proof of the existence of its exponential moments.

3 Main Result and Its Proof
The following theorem is the main result of our paper.

Theorem 3.1 Let us consider an infinite-dimensional Brownian diffusion solution of the
system of SDE (9) where the drift term b satisfies the properties (A1)—(A3) given in the
previous section. Suppose the initial distribution v to be a Gibbs measure associated to an
a priori measure m and to a finite-range Lipschitz continuous interaction ¢.

Then there is a time ty := ty(@, b) > 0 such that for any time t < t, the law of the diffusion
at time t is a Gibbs measure associated to the a priori measure m and to an absolutely
summable interaction ¢'.

A main step in the proof of Theorem 3.1 is a representation lemma, presented in the next
subsection.

3.1 The Finite-Dimensional Density at Time ¢
Let us first introduce a finite-volume dynamics in A in the following way

dXM(t) =b;(t, X)dt +dBi(t), i€ A suchthat N'+iC A,

. : 2D

dXM(1)=dB;(1), i € Asuchthat V' +i & A.
Its existence (and uniqueness) is ensured by the assumption (A2) (see Theorem 11.2 in [16]).
For the finite-volume Gibbs measure with free boundary conditions v, we denote by v}
the distribution of (X lA (t))ica starting from v, at time 0. Note that the law of the path
(XA ()iea is absolutely continuous with respect to the Wiener measure on any finite time
interval (see e.g. [14], Theorem 7.2). Therefore, at any fixed time ¢, vl —as vy—has a
density w.r.t. m(dx,), which we denote by f} (x)-
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Lemma 3.1 Let f}(xa) be the density of the finite-volume probability measure v} w.r..
m(dxy). Let therefore f,(\) denote the (Gibbsian) density of vy w.rt. m(dxy,). Then there
exists a time ty > 0, such that for any t <t the ratio f}/ f,(\) admits a cluster representation:

dv! f(xa)
—A(xp) = f’g A= exp(Z a(w' (T, xr)> (22)
dva Sa(xa) ot
where the “cluster weights” w' (T, xr) satisfy
VieZ!, Y sup |[w'(T,xr)| < oo (23)

I'si xeRZ

and a(T") are combinatorial factors. The sum runs over clusters I' which will be described

in (74).

Suppose Lemma 3.1 holds true. We now show why it implies the claim of the main
theorem when v = /%, a so-called Gibbs measure with free boundary conditions, that is a
limit of finite-volume Gibbs measures with free boundary conditions.

Let us denote by Y (x) the conditional density

1i f}\(xA)
Ty = 24
20 ff}\(yixA\i)m(d)’i) @9

and rewrite it as

Th () = Salxa) o |: FaQixa) fRixaw)

-1
dy; . 25
f/(\)(XA) fj(\)(yixA\i) fj(\)(xixA\i)m( y )i| )

Then using the claim of Lemma 3.1 we have a cluster representation of the ratio f5/f5. So
(25) becomes

exp(Z a(Tw' (T, Xr))

rca
X |:/ eXP(Z a(Mw'(T, (yixA\i)F)>
rca
-1
x exp(— > o ixan) — wA/(xixA\f))m(dyi>] (26)

where we used (5) to express the integral in the r.h.s. of (25) in terms of the interaction ¢.
The sum runs over all clusters I' whose support is contained in the subset A. Since the sum
over all clusters whose support does not contain i cancels out in the ratio, (26) becomes

eXp(erc;\ a(Mw' (T, xr) — Z/X/C{\ (X))

Th () = )
r () Jexp(3- rea a(@)w' (T, (yixa)r) — Z/X/CBA oa ixa)m(dy;)

€2))

Due to the claim of Lemma 3.1, Tj\’i (x) converges, as A goes to Z4, uniformly in x, towards

exp(—hi(x;, Xzd\;))
J exp(—hi(yi, xza\,))dm(y;)

(28)
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where h! is given by

hi(xi, Xga) = — Y a(@w' (T, x0) + Y oar(x) (29)

I'si A'>i

which is built from an absolutely summable interaction ¢'. In particular we have proven that
uniformly in x, for t <1y

dvi (xi|xp\) —> dv'(xi|xza\;) (30)
A—74
which implies that v’ is Gibbs, since v}, converges weakly to v,, and hence the uniform
limit of v} (dx;|xa\;) is a continuous version of the conditional distribution v’(dx; lxzd\:)s
see Lemma 3.2 below.
Lemma 3.2 Let (up)a be a collection of probability measures on RZ' indexed by finite

subsets A C Z4. Suppose that py — j weakly as A 1 Z2. Suppose that the conditional
distributions satisfy

1&% A (dxi|xa\ey) = w(dx;, Xzd\(;)) 3D
where the limit is in the weak sense as a measure on dx;, and is uniform in the variable
Xzay(iy- Then (dx;, Xza\(;)) is a continuous version of the family of conditional probabilities

/.L(d.xl' |de\{i])'

Proof By uniform convergence, x — i(dx;, xza\(;)) is weakly continuous (as a map from

RZ into the set of probability measures on R), so it suffices to show that it is a version of
the conditional probability w(dx;|xza\(;), or equivalently that for every local and bounded

continuous function f : RZ — R
/f(xixzd\u))ﬂ(dx) :/ f(xixzd\(i))ﬁ(dxi,xzd\{i})ﬂ(dxzd\{i})~ (32)

By locality of f, for A C Z¢ large enough,
/fdMA = // S Ocixanip) ma (dxi | xangip) e (dxangy)

= / S Geixga ) ma (dxilxag) a (dxza ) - (33)
On one hand, by the weak convergence,
lim /fdu,\ = / fdu.
AZd
On the other hand, by the uniform convergence (31), the right-hand side of (33) equals
f f(xixzd\{i})ﬁ(dxi»de\{i})MA (dxzd\{i}) + €
where €, goes to zero as A 1 Z¢. Since the map

X = /f(xide\{i))ﬁ(dxiade\{i})
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1132 F. Redig et al.

is bounded and continuous, by weak convergence of 5 to ¢, we have

lim // S Geixgay DA xi, Xgay i) a (dXzay )

AtZd
=// S Geixgay (A xi, xza\ i) (dxgayy) - (34)
Combining both convergences, it implies (32). ]

Let us remark that in order to prove (22) in the previous lemma we can replace the
reference measure m by any other one, for example by the Lebesgue measure since

% dﬂ_dvl\ dUA (35)
dm ' dm dx " dx

3.2 Cluster Expansion of the Finite-Dimensional Density

Let v/, be the finite-volume time-evolved measure with initial free boundary conditions de-

fined above. To prove Lemma 3.1 we perform a cluster expansion of /“’UA

To do this, we first provide a representation of f} , the density of v/ w r.t. Lebesgue mea-
sure. By the Lebesgue density theorem, the density f of an absolutely continuous measure
w w.r.t. the Lebesgue measure can be computed via

f () = lim / heQ)  (dy) (36)

where h:(y) = L. x4 ().
In a | A]-dimensional situation, one takes &, (xs) =[[;cp 2 L(x);
Thus, for = v}

1 1 1
/ihg(xA)dVA(xA)ZEQVAA <£hs(X(t))> Z/ZEQ;\A (he(X(@)))valdyns).  (37)
This leads to

Lemma 3.3 The density f} of v, w.rt. the Lebesgue measure is given by

t 1 t
flxa) = /R Ep (gexp< fo bis, X)dXi(s) = 5 /0 bf(s,X)ds>)

x [T pe - xiova(dya) (38)

ieA

where p, is the transition kernel of a standard Brownian motion and P[‘(VJ’,);], A 1S the law of the
| A|-dimensional Brownian bridge being at time O in y, and in x, at time t.

Proof Using Girsanov’s formula

dQA(X)_exp<Z/ bi(s, X)dX;(s) — —/ bz(s X)ds)dP’(X) 39)

ieA
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where P} is the product of independent Wiener measures. Then

Egs (h:(X(1))
=Ep <Hexp< / b,-(s,X)dX,-(s)—% / b2 (s, X)ds)hé(X,-(t))) (40)
ieA 0

and taking the limit ¢ — 0 gives

i 1
lim WEQ;\ (he (XA (1))

<Hexp</ bi(s, X)dX;(s) — %/Otb,?(s, X)ds)‘XA(t):xA>

ieA

< [T @1

ieA
which we can rewrite as
1 t
(1‘[ exp( / biGs. 04X, = 5 [ 6, X)ds)) [TrGix. @
o ieA 2 Jo ieA

So finally we obtain, plugging in (42) into (37):

1 t
fi(xm:/RAlE (),]A(l_[exp(/ b,-<s,X)dx,~(s)—5/0 b?(s,X)ds>)

x [ ] pe s xiova(@ya). (43)

ieA

Using the previous Lemma 3.3 we write the ratio f1/f2 as

i CIN I " R
) = /R . IEPE(;;[].A(gexp( /0 bis, X)dXi(s) = 5 /0 b (s,X)ds))
x [ [ pei,x)exp (— > wA(y)> exp<+ Y e (x))dyA. (44)

ieA ACA ACA

We will now prove

Lemma 3.4
fr(xa)
fa(xa)

where the functional R', is defined as

R (X) ::Hexp(/ bi(s, X)dX,(s) — %/ b2 (s, X)ds)
0 0

ieA

=Ep; (R} 06)), 45)

x exp(— D 0a(X(0)) — ga (X(z))). (46)

ACA
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1134 F. Redig et al.

Proof Due to (46) and (44)

SFa(xa) /
= Ep iy Xi)dya. 47
on) = Jn pin gpmy x)dya 47)
Since 6, o 6, = Id we can also write the ratio as
. t -
/R Epyr (R0 06) ];[ P (i, xi)dyn (48)
or
[l;A ]E Py, a00 ! (R o6, gpt(yzaxz)dYA (49)

The image of the time-reversal of the Brownian bridge is again a Brownian bridge now
with reversed starting and final points, Py, , 06, = Py} A Furthermore the kernel p,
is symmetric, i.e., p,;(x, y) = p;(y, x). Thus the expectation is now taken w.r.t. a Brownian
bridge starting in x and being in y at time ¢. Integrating out all possible final points y, the
above integral (49) reduces simply to

Epy (R}, 06,) (50)

which leaves us with an expectation w.r.t. independent Brownian motion starting in x, of
some time-reversed functional R, o 6;. g

3.3 Cluster Estimates of f%/f2

To decompose the expectation (50) in terms of clusters we write R (X) o 6, under the form
exp—_4ca Wa(r, X) on the path space, where W, is F,-measurable and apply a stan-
dard Mayer expansion for ¢ small. ¥, includes a contribution from Girsanov terms and the
interaction at time 0.

Indeed one can write

Ry 0 6,(X) = [ ] exp(=wa(, X)) (51)
ACA
with W is defined as
W (1, X) = Dy (X) + 9a(X (1) = 9a (X (0)) (52)

and
O (X)=—F 00,(X) (F/(X):=Fj(X1:)), 53)
@’ (X)=0 if there does not exist i such that A =N +i.

Next we give the usual definitions for performing a cluster expansion. Remember that
the drift b and the initial interaction ¢ are of finite range. So we can fix a natural number
N = N (b, ¢) which depends only on the range of b and ¢ such that for |[A| > N, ¥, =0.
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Short-Time Gibbsianness for Infinite-Dimensional Diffusions 1135

We call a cluster y = {A;,..., A,} a collection of such elements A; such that any two
Aj, Aj € y are connected, i.e., there exists a sequence i =iy, ...,i,, = j such that A; N
Ay #0, ..., Ai,_ NA;, # 0. The support of the cluster y is the finite subset [ J,_, _, A
and is denoted by supp(y). |y| denotes the cardinality of the support of y. Clusters y;, y;
are said compatible if their supports are disjoint. Let C, be the set of all collections of
compatible clusters in A. We expand

— 1
[Tl —1+n=143" > —KeXO- KX 64

ACA n=1{y1,....yn}€Cp
where
K X) = J(e "0 —1). (55)
Aey

Hence, following Lemma 3.4, we obtain

FA/FRGn) = Epy (1'[ (7™ ¥ —1+ 1))
ACA
> 1
= 1+Ep (Z > ;K[(m)(X)---K’(yn)(X))
n=1 {y1,....yn}€Ca '

- 1
1Y ) B (K 0000) - Epe (K (03)(X)

n=1{y1,....yn}€Cp

ad 1
::1+Z ;w[(yl,x)---w’()/n,X) (56)

n=1{yp,..., Yn}ECA ’

where the cluster weights are given by
w'(y,x) = =Ep: (K' ()(X)). (57)

We bound the weights w' as follows.
Lemma 3.5 There exists a strictly positive function A(t) which tends to O for t — 0, such
that for all clusters y in A,

sup [w' (y, x)| < e~ (58)

Ax

where c(t) := —log(\(1)).

Proof The next technical problem is to interchange several times integration and products.
We thus use the following generalised Holder inequalities proved in Lemma 5.2 of [6].

Lemma 3.6 Let (jui)rey be a family of probability measures, each one defined on a space
E; where the indices k belong to a finite set x. Let us also define a finite family (g;); of
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functions on E, = Xyey Ex such that each g; is x;-local for a certain x; C x in the sense
that

gi(e)=giley), fore=(ep)rey € Ey. (59)

Let p; > 1 be numbers such that

Vkex. Y Upi<l.

{i:x; ok}

Then

1/pi
’/ [ 8 ®kex drui| < H(/ i " ®rey, dﬂk) : (60)
Ex i i “Ex

We apply this lemma with x = supp(y) (y =: {A1,..., A,)), xi = A;, gi =e "4 — 1
and uy = P}'. Let p > N be the next odd number larger than N and let p; = p for all i.
Then ZA,-sk 1/pi < N/p < 1. Lemma 3.6 provides

' (.01 = [Eps (K' 0 (X)) < [T By (e = 1)) (61)

i=1

Recall that the functional W, was defined in (52). Since ¢, is Lipschitz continuous with
a constant C > 0 independent of A, the cardinality of A; is uniformly bounded by N and
@', # 0 only if there exists a k such that A = N + k, we obtain

[Wa(t, X)| < Lacnr | @ (XD | + Csup | X (1) — X;(0)]. (62)
JjEA

Using the simple fact that, for a, b > 0,
(€ et =1 <27 (P (e’ = 1) + (e = 1)P) (63)
and the estimate (62), we get
Ep (

< Ep+ ((exp(| Py 14 (X)) | Lacpk + C sup 1X;(1) — X;(0)]) = 1)")
je

e—\l/A(t,X) _ 1|P)

< 2 ps (exp(pC sup 1X; (1) — X (O)1) (exp( Pl (X)L amnra) — 1)")
Jj€

+27Epx ((exp(C ?25’ 1X;() — X;0)]) —1)")
=:2"Epr(G1,a(t, X)) +27Epr (G241, X)). (64)
By the Cauchy-Schwarz inequality
Eps(G1a(t, X))

< Ep ([exp(| Pt (X) [ Laonrsk) — 1]2p)1/2
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x Epe (exp(2pCsup|X;(1) — X;(0)]))
JEA

2p\1/2
<Ep:((explF{ 0 6,(X)| — 1))
1/2
x Eps (exp(2pCsupl X, (1) — X ;(0)]))""%. (65)
jeA
The exponential moment condition (A3) assures that exp | F} (X) o 6;| converges in L*P(PY)

towards 1 for ¢ going to 0 uniformly in x. So there exists a positive function c;(¢) only
depending on ¢ vanishing when ¢ is going to 0, such that

Eps ((expl Ff 06,001 — 1)) * =1 ¢, 0). (66)

The second term in (65) will be controlled as follows. We recall that X is a family of inde-
pendent Brownian motions under P, thus

Epx (exp(2pCsup|X (1) — X;(0)])) < E(expQpCNVIIZD) =T1(1) (67

JEA

were Z is a standard Gaussian variable. Clearly, the function ¢;(¢) tends to 1 as ¢ goes to 0.
We now obtain,

Epx(G1.a(t, X)) <ci(t)ci(t) :=C(¢) with }lm0 Ci(r) =0. (68)

In a similar way we obtain

Ep(Ga(t, p, X)) = Epx ((exp(C suE 1X;(1) — X;0]) —1)")
VS

<E((exp(CN b, p)V11Z]) — 1)")

CNJ1|Z| 14
< E((/ exp(u)du) )
0

< (CN)"VI"E(1Z|? exp(pC NV Z))) =: e2(0). (69)

where ¢;(¢) vanishes for ¢ small. So finally

Epx(Gy(t, p, X)) <cp(t) with lin(l)cz(t) =0. (70)
Thus, calling
A0 :=2(C1(1) + @)™ and (1) = —logA(1) (71)

we obtain the desired cluster weight bound

[w' (v, )| = [Eps (K' ()(X)) | < exp(—=c@)]y]). (72)

Note that this bound is uniform in the initial condition x.

To complete the proof of Lemma 3.1, we need a cluster expansion of log(;{} EXA; ). This
JAA

will be done using the Kotecky-Preiss criterion (see [8], p. 492). The bound (72) provides
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that, for # < ¢, small enough and any y C A,

sup sup > w' (v, x0)le” < [y. (73)

d d
xeREC ACZE y rsupp(y)nisupp(y) 4

Indeed, by the finite-range assumption, the number of clusters y of size n, containing a fixed
point is bounded by e where ¢ > 0 does not depend on ¢. So an absolutely convergent
expansion of the logarithm of the series (56) exists for ¢ small enough:

10g<fA(xA)> =Y ) a . vw x) w1, X)

0
Ta(xa) n=1 T:={y1,...yn}Un
=: Y a(@w' (T, x) (74)
rca
with a(I") and a(y,, . .., ) purely combinatorial terms coming from the Taylor expansion,

and w' (T, x) depends only on xr. The set U, is the set of all compatible clusters whose
union is connected too, the latter sum runs over all clusters I' which consist of compatible y;.
The proof of Lemma 3.1 is now completed. O

Next we want to show that if the diffusion starts with any Gibbs measure v, i.e., not
necessarily with a measure with free boundary conditions ¥/*, the probability measure v’
is Gibbs associated to the same interaction.

To do so, use the well-known fact (see e.g. [5]) that every Gibbs measure associated
to a given interaction ¢ is a mixture of extremal Gibbs measures, which are themselves
limits of finite-volume Gibbs measures with fixed boundary conditions. Now, fix a boundary
condition z and look at the finite-volume dynamics (21) where the initial distribution is
given by v, ; instead of v. We call v}, _ the distribution of (XA (1))ica starting from vy ..
One can without difficulty adapt the result of Lemma 3.1 to the case with this boundary
condition. There exists a similar cluster expansion, with weights (depending on z) which can
be controlled too. Now the main argument is the following: The upper bounds in (62) are
uniform in z since the Lipschitz constant C of the interaction is independent of the boundary
condition. Therefore the bounds on the cluster weights—similar to (72)—are uniform in z,
and the cluster expansion-generalizing (74)—converges when the volume A goes to Z¢.

Moreover, if we start from a Gibbs measure v which is translation-invariant, we can show
that v, remains Gibbs using another way, i.e. the variational principle characterizing Gibbs
measures (see [5], Sect. 15.4). This applies in our context, even if spins are unbounded,
since the a priori measure is finite and the interactions are absolutely summable. This ar-
gument of Gibbsianness via the variational principle has the advantage that the implication
“v, Gibbs for some translation-invariant initial Gibbs measure v implies v, Gibbs for all
translation-invariant initial Gibbs measures” is true even for ¢ large and is itself not related
to the method of cluster expansions. The drawback is however that one has to restrict to
translation-invariant Gibbs measures.

First notice that, if initially the relative entropy density i (v|v/*¢) vanishes, then the rela-
tive entropy density of the time-evolved measure satisfies

l-(vt|vt,free) < l-(v|vfree) =0

for all + > 0. Hence if v/*¢ is Gibbs with a absolutely summable interaction, then v’
is Gibbs with the same interaction. Notice that this fact does not depend on ¢ being
small.
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In the lemma below we show that i (v|7*¢) = 0 is zero for every extremal Gibbs mea-
sure v with interaction ¢. By convexity of the relative entropy density, this then extends to
all Gibbs measures v with interaction ¢. The proof follows the standard argument of the
variational principle (boundary condition independence of the pressure), see [5]. We prefer
to spell it out however, for the sake of completeness, as we are in a context of unbounded
spins.

Lemma 3.7 Let v be a translation-invariant Gibbs measure and v*¢ a Gibbs measure with
free boundary conditions. Then the relative entropy density i (v|V"*°) vanishes.

Proof Let A C Z4, v and v* be defined as in the assumption of the lemma. The relative
entropy in volume A of v w.r.t. v is defined by

ree dvA
Ia AV = [ log( — (xa) Jva(dxa). (75)
av’
A
By the DLR conditions,
exp(—ha(xa, zac
dva(xa) = f PRGN 2D) |, (. (76)
ZA
As usual, we show that
dv
SR (xa) < exp(o(IAl) (77)
dv)y
uniformly in x, where
dUA Z;:'ee
)= [exp( = D paleazae) | Sovadane). (78)
d A ANAC£) A
ANAZED

The ratio of the partition functions is equal to

ZJX""_ ! / —h d 79
7 =7 | SPChatmdn (79)
= / exp(—hA<xA)+hA(xA,zA>)Wm(dm (80)
A
= / exp( > m(mm)) e N (81)
A

ANA#D
ANAC )

=E, (exp( > gaA(XAzA«))). (82)

ANAHD
ANAC£(

We bound the interaction by its supnorm and use that ¢ is absolute summable to deduce that

D" patxazac) <o(lAl) (83)

ANAHD
ANAC £
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which means for the ratio of the partition functions (79) that

free
ZL*” <exp(o(|Al)) (34)
A
and a fortiori we conclude that
dUA
——free (Xa) = | exp(o(JAD)va(dzac) (85)
dvy
= exp(o(|A])). (36)
The relative entropy becomes
Ia(a V") < /0(|A|)VA(dxA) =o(|A|) (87)

and therefore the relative entropy density

. 1 ;
iy = }im _IA(VA|V)XEE) =0.

124 |A] 0

Corollary 3.1 The proof of Theorem 3.1 provides a constructive way to obtain a solution
of the system (1) on a small time interval as limit (in terms of cluster expansions) of finite-
dimensional approximations, whose existence (and uniqueness) is ensured by the assump-
tion (A2) (see Theorem 11.2 in [16]).

Appendix

In this section we want to show that the assumptions on the drift are satisfied for the pre-
sented class of examples.

A.1 Example 2.1: Markovian Drift

We will check the condition (A3) when the drift is Markovian. First of all we compute the
time-reversal of the functional in X

/bo(s,X(s))dXo(s)—%/ b%(s,X(s))ds::I[(X)—%/ bi(s, X (s))ds, (88)
0 0 0

where the stochastic integral part 7, (X) is defined as

n

II(X):/ bo(s, X (s))dXo(s) = lim Zbo(sjq,X(sjq))(Xo(sj)—Xo(sjfl)) (89)
0

As—0 j—]
with As the mesh size and 0 =59 < --- < 5, = a partition of [0, ¢]. Then the time-reversal

of the stochastic integral given in (89) is

Lo6(X) = lim > bolsjo1. Xt —s;-1)(Xolt —s;) — Xo(t = 5,-1))

As—0 1
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rji=t—sy—j

— nlLrglc Zbo(t —rj, X(r)(Xo(r;) — Xo(rj=1))
Ar—0 j:l

= lim Zbo(l‘—rjfl,X(rj—l))(XO(rj)_XO(rj*I))

Ar—0 j=1

— lim Y “bo(t —rj. X(r)) + bo(rj—1. X (rj-1))

Ar—0 j—1
X (Xo(rj) — Xo(rj-1) (90)
which is equal to the sum of an It6 integral and twice a Stratonovich integral,

f bo(t — s, X (5))dXo(s) — 2/ bo(t — s, X(s)) odXp(s). 1)
0 0

Note that X is Brownian motion under the measure P*. So using the It6-Stratanovich rela-
tion (see e.g. Definition 3.13 in [7]), we obtain under P*

[ 06,(X)= —/ bo(t —s, X(s))dXo(s) — / by(t — s, X (s))ds. (92)
0 0

The second integral in (88) is an ordinary Riemann-Stieltjes integral. So we obtain

t t
</ by (s, -(s))ds) 06,(X) = / byt — s, X (s))ds. (93)
0 0
Thus, the time-reversal of (88) is equal to
Fj06,(X)

= —/ bo(t —s, X(s))dXo(s) — / <b{,(t -5, X(s))+ %bg(r -, X(s)))ds. (94)
0 0

To obtain the convergence of exp|Fj; o 6, (X)| towards 1 when ¢ tends to 0 in L7 (PY),
since the a.s. convergence is clear, it is enough to prove a uniform bound for ¢ € [0, 1] in
L¥ | p' > p.Indeed

Ep« (exp(2p| F§ 0 6,(X)|))

‘
< ep’z(l\ho\lioﬂl\bé\Ix)EPX (exp(zp”/ bo(t — s, X (s))dXo(s)
0

) o

The first term on the right side is bounded for ¢ € [0, 1]. The second term can be controlled

as follows:
Epx <exp <2p’ ))
<Epx <exp(2p’/ bo(t — s, X(s))dXo(s)>)
0

/ bo(t — s, X(5))dXo(s)
0
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+Eps <exp<—2p/ / bo(t—s,X(s))dXO(s)>>. (96)
0

Since exp(2p’ fot bo(t — s, X (s))dXo(s) — 2p” fot bi(t — s, X(s))ds) (resp. exp(—2p’ x
fot bo(t — 5, X(s))dXo(s) — 2p? for b3(t — s, X(s))ds)) is a P*-martingale with expecta-
tion 1

Eps <exp<2p’/ bo(t — s, X(S))dXo(S))> <"l and
' o7

t
Epx <exp<—2p// bo(t —s, X(s))dXo(s)>> < ezp/zt“bo”go,
0

which are bounded uniformly for ¢ € [0, 1] too.
A.2 Examples 2.2 and 2.3: Interaction with Finite Extent in Space and Time

We want now to do explicit computations for the long-memory example b;(f,w) =
jg €(s)(w; (s) — w; (0))ds with € satisfying (18). The requirement (A2) holds since

‘/ E(S)(wo(S)—wo(O))ds—/ €(s)(wy(s) — wy(0))ds
0 0
52/ €(s)ds sup |wo(s) — wp(s)]. 98)
0 0<s<t

To prove the condition (A3) we first analyse the stochastic integral term J,(X) :=
o bo(s, X)dXo(s).

JI(X)=/ / €(r)(Xo(r) — Xo(0))drdXo(s)
0 JO
=/ é(r)/ dXo(s)(Xo(r) — Xo(0))dr
0 r

=/ €(r)(Xo(1) — Xo(r)(Xo(r) — Xo(0))dr 99)
0

(for the interchange of the order of integration, see for example the lecture notes [17]). The
integral is now an ordinary Riemann-Stieltjes one. Hence, its time-reversal satisfies

Ji 06, (X)
=/(; €(r)(Xo(0) — Xo(t = r)(Xo(t —r) — Xo(1))dr
= /(; et —r)(Xo(t) — Xo(r)) (Xo(r') — Xo(0))ar'. (100)

Similar computations lead us to the time-reversal of the functional

t K 2
X+ (/ <f e(r)(Xo(r) — XO(O))dr) ds).
0o \Jo
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One obtains
2

/ (/3 et —r)(Xor) — XO(O))dr> ds.
o \Jo

Fy06,(X) = / €(t —$)(Xo(t) — Xo())(Xo(s) — Xo(0))ds
0

Thus

t K 2
— l/ (/ €t —r)(Xo(r) — XO(O))dr) ds. (101)
2 Jo \Jo

As in the above Example A.1 the convergence of exp|Fj 0 6,(X)| in L,,(P*) fort — Ois a
direct consequence of a uniform bound for 7 € [0, 1] in L p’ > p, which we now prove.

Ep«(exp(2p’ |Fj 0 6,(X)]))

<Epx (exp(p’e(t)(Z +te(t)) Sup[Xo(S) _ Xo(())]z))
< Epo (sup[exp(X (5) = X (0)) ] )

< Epo (sup[exp(X () = X (0)°]) (102)

s<t

where (1) =: fot €(s)ds and ¢ = p’e(1)(2 4+ &(1)). Since X (¢) is a Brownian motion w.r.t.
P,", we can apply Doob’s inequality and then obtain

Ep: (exp(2p/|F§ 0 6,(X)))

3 < c 1) E 0 (exp2el X (1) — X (0)])

c—

< <ﬁ> E(exp(2cv/t|Z|))

< <Ci 1) E(exp(2¢|Z])) < +00 (103)

where Z is a standard Gaussian variable. The proof of (A3) is now completed for the Exam-
ple 2.2.

Example 2.3 can be treated in a very similar way, we leave the straightforward details
here to the reader.
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